The Estuary Geometry is Not Static: Natural and Human Influence on Salinity Trends

Chris Enright, Aaron Miller, Brad Tom Suisun Marsh Branch – DWR October 6, 2004

The Estuary Geometry is Not Static: Natural and Human Influence on Salinity Trends

Chris Enright, Aaron Miller, Brad Tom Suisun Marsh Branch – DWR October 6, 2004

Take home's

- Outflow and salinity trends are minimal since 1921. Most variability explained by climate.
- The physical geometry of the estuary dissipates tidal energy and disperses salt.
- The estuary geometry changes through "natural" and human influence.
- The salinity regime of the estuary depends primarily on geometry.

This talk

- 1. Outflow and salinity trends
- Effect of geometry on salinity transport
- 3. "Natural" vs. human influence on geometry, and therefore, salinity:

Examples:

- Gold rush sediment erosion from Suisun Bay
- Delta channel "cuts"
- Sea level rise
- Sacramento & SJR ship channels

- Delta outflow ~22%
 less than it would be.
- No precipitation trend. (1921-2002)

Historical Outflow and Total Export

Delta Outflow Seasonal LOESS trend decomposition

Delta Outflow Seasonal LOESS trend decomposition

Water projects have re-distributed outflow seasonally

Water projects have re-distributed outflow seasonally

Suisun Marsh/Bay salinity data

Historical Suisun Marsh/Bay Salinity: 1921 - 2002

Collinsville SC Seasonal LOESS trend decomposition

Beldons Landing SC Seasonal LOESS trend decomposition

Port Chicago SC Seasonal LOESS trend decomposition

Outflow and salinity trends:

- Long-term outflow trends are minimal
- Long-term SB salinity up 5-10%
- Seasonal redistribution of outflow
- Seasonal salinity is coherent with outflow

2. Salinity transport and geometry

- The estuary dissipates tidal energy via friction and disperses salt.
- Dispersion caused by
 - Sheared flow
 - "Geometry dispersion"
 - Tidal pumping
 - Tidal trapping

3. Natural vs. human influence on geometry and salinity

"Natural" salinity trend drivers

- Climate/Ocean conditions
 - (ENSO 3-5 yr, PDO 20-30 yr)
- Coastal upwelling
- Climate change and runoff to SF Estuary
- Sea level rise ~1-2 mm/year
- Sediment transport- bathymetry change:
 - Hydraulic mining sediment transport

"Natural" salinity trend drivers

- Climate/Ocean conditions
 - (ENSO 3-5 yr, PDO 20-30 yr)
- Coastal upwelling
- Climate change and runoff to SF Estuary
- Sea level rise ~1-2 mm/year
- Sediment transport- bathymetry change:
 - Hydraulic mining sediment transport

Human influenced salinity trend drivers

- Delta channel cuts
- Ship channels
- Channel meander cutoffs
- Subsided, then flooded islands

Human influenced salinity trend drivers

- Delta channel cuts
- Ship channels
- Channel meander cutoffs
- Subsided, then flooded islands

Suisun Bay bathymetry

- Eroded 106 cm since 1922
- > 100 million cubic meters
- How does deepening Suisun Bay affect estuary salinity?

Mechanisms

Tidal datum

- Tidal excursion
- Salt flux

Influence of Delta channel cuts on Suisun and Delta salinity

Delta Map 1869

3. Natural and human influence... % Change -10.0 % Salinity Difference -9.1 -8.2 No cuts minus existing bathymetry -7.4 -6.5 -5.6 -4.7 -3.8 -3.0 -2.1-12 -0.320.56 1.4 2.3 3.2 4.1 5.0 5.8 6.7 7.6 8.5 9.4 10.2 2D Plot Animate 11.1 ▶ Start Close Stop Delay: 0 213 0.25 12.0 01 Aug 1900 0015

Influence of lower sea-level on Suisun and Delta salinity

Sea level was about 1.5 cm lower in 1921

Influence of ship channels on Suisun and Delta salinity

Conclusions

- Outflow and salinity trends are minimal since 1921. Most variability explained by climate.
- The physical geometry of the estuary dissipates tidal energy and disperses salt.
- The estuary geometry has changed through "natural" and human influence.
- The salinity regime of the estuary depends primarily on geometry.

Thank You

- Aaron Miller
- Brad Tom
- John DeGeorge
- Richard Raichele
- Jon Burau
- Victor Pacheco